AI: Self-learning machine to help cancer therapy

MIT researchers are employing novel machine-learning techniques to improve the quality of life for patients by reducing toxic chemotherapy and radiotherapy dosing for glioblastoma, the most aggressive form of brain cancer.

Glioblastoma is a malignant tumor that appears in the brain or spinal cord, and prognosis for adults is no more than five years. Patients must endure a combination of radiation therapy and multiple drugs taken every month. Medical professionals generally administer maximum safe drug doses to shrink the tumor as much as possible. But these strong pharmaceuticals still cause debilitating side effects in patients.

In a paper being presented next week at the 2018 Machine Learning for Healthcare conference at Stanford University, MIT Media Lab researchers detail a model that could make dosing regimens less toxic but still effective. Powered by a “self-learning” machine-learning technique, the model looks at treatment regimens currently in use, and iteratively adjusts the doses. Eventually, it finds an optimal treatment plan, with the lowest possible potency and frequency of doses that should still reduce tumor sizes to a degree comparable to that of traditional regimens.

In simulated trials of 50 patients, the machine-learning model designed treatment cycles that reduced the potency to a quarter or half of nearly all the doses while maintaining the same tumor-shrinking potential. Many times, it skipped doses altogether, scheduling administrations only twice a year instead of monthly.

“We kept the goal, where we have to help patients by reducing tumor sizes but, at the same time, we want to make sure the quality of life — the dosing toxicity — doesn’t lead to overwhelming sickness and harmful side effects,” says Pratik Shah, a principal investigator at the Media Lab who supervised this research. The paper’s first author is Media Lab researcher Gregory Yauney.

The researchers’ model uses a technique called reinforced learning (RL), a method inspired by behavioral psychology, in which a model learns to favor certain behavior that leads to a desired outcome.

The technique comprises artificially intelligent “agents” that complete “actions” in an unpredictable, complex environment to reach a desired “outcome.” Whenever it completes an action, the agent receives a “reward” or “penalty,” depending on whether the action works toward the outcome. Then, the agent adjusts its actions accordingly to achieve that outcome.

Rewards and penalties are basically positive and negative numbers, say +1 or -1. Their values vary by the action taken, calculated by probability of succeeding or failing at the outcome, among other factors. The agent is essentially trying to numerically optimize all actions, based on reward and penalty values, to get to a maximum outcome score for a given task.

The approach was used to train the computer program DeepMind that in 2016 made headlines for beating one of the world’s best human players in the game “Go.” It’s also used to train driverless cars in maneuvers, such as merging into traffic or parking, where the vehicle will practice over and over, adjusting its course, until it gets it right.

The researchers trained the model on 50 simulated patients, randomly selected from a large database of glioblastoma patients who had previously undergone traditional treatments.